METHOD OF DESIGNING EXPLOSIVE-DRIVEN
MAGNETIC FIELD GENERATORS

V. A. Lobanov UDC 538.4:621.31

A method of designing explosive-driven magnetic field generators that allows us to establish a
dependence between the parameters of the generator circuit, in which the greatest energy re-
lease occurs under a time-invariant resistive load, is described. The problem of switching two -
dimensional generators to a load whose resistance linearly increases with temperature is analyt-
ically solved as an example. The theoretical possibility of designing a generator in which the
power released under the resistive load R(t) varies in a specified way with time is demonstrated.
Types of current pulse, power, and energy released in the load are studied in the case of dif-
ferent generator circuit parameters.

§ 1. Explosive-~driven magnetic field generators operating under the principle of rapid compression of the
magnetic flux by means of an explosion, are the most powerful sources of pulsed currents [1-4]. The greatest
attention in studies on explosive-driven magnetic field generators has been paid to their energy characteristics.
Energy problems are related either to the obtaining of maximal energy in the active mode [5] or to attaining
the greatest transfer of the energy of the explosive into electromagnetic energy (increase of generator efficiency)
[6]. An analytic solution of such problems can be obtained only for a constant load Ry, such problems being
numerically solved on a computer for an arbitrarily variable resistance. The use of explosive-driven mag-
netic field generators in plasma experiments [7] to obtain high magnetic pressures in isentropic compression
of matter [8] or for other physical experiments related to problems in energetics raises problems associated
with matching the generators to different loads and obtaining current pulses, power, and magnetic pressures
that vary with time according to a given law.

The operation of an explosive-driven magnetic field generator on a concentrated active load will be con-
sidered within the framework of an electrical engineering model, according to which an explosive-driven mag-
netic field generator is represented as a decreasing inductance L,{t)connected to a resistance R(t) and induc~
tance L, (Fig. 1). A current I; passes through the generator at the start of compression of the magnetic flux
(t=0). I is assumed in the calculations that losses of magnetic flux in the generator itself are slightly less
than load losses.

Based on the induction law it can be found that current in the generator is described by the equation

dnf=(1 — p)dinL, L=Ly()+L,.

Current depends, in addition to inductance L, onthe dimensionless function p (dimensionless circuit resistance)
which is defined both as a resistance R(t) and (in terms of dL /dt) as the structural features of the explosive-
driven magnetic field generator,

R{t)
pt) =~z 1.1

In some cases, the current equation can be obtained explicitly if the behavior of p(t) is specified. We
may obtain different time dependences p(t) for the same value of R(t} by varying dL/dt, and succeed in trans-
mitting different types of -current in the load.

The dependence of generator currenton the dimensionless combination of the cirucit parameters in Eq.
(1.1) can be used tc solve a number of problems in which the variation of R(t) has been preassigned, based on
the experimental conditions (this involves the determination of a generator inductance optimal for usingthe ex-
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plosive energy and the inductance at which the current pulse, power, and energy in the load vary with time
in a specified way). We integrate Eq. (1.1), taking into account the actual conditions of the problem and the
behavior of R(t) in order to solve them. Here p(t) is set equal to any function convenient for the calculation
and that ensures the problem will be solved.

Explosive-driven magnetic field generators are the only energy source able to ensure the solution
of these problems for arbitrary active loads.

The parameter p whose physical meaning is the ratio of compression time 7, to time of relaxation
of the magnetic flux, ;=L /R, is sometimes interpreted as the inverse Reynolds magnetic number [7].

§ 2." Letususe our method to find the optimal (in terms of the energy of the explosive) inductance of
an explosive-driven magnetic field generator operating on a heat-varying resistive load. The optimal (in
terms of the energy of the explosive) generator will be that generator in which the greatest fraction of the
energy of the explosive is transformed into electromagnetic energy. An optimality condition has been pre-
viously formulated [6] and holds if the power developed as the current-carrying circuit is deformed, is
equal in any generator cross- section to the maximal fraction of power developed as the explosive is ex-
ploded, i.e.,

— 2 dLjde = k¢S (2) D, 2.1)

where q is the explosive energy per unit of volume, S(x) is the cross-sectional area of the explosive charge,
x(t) is the current coordinate of the detonation front, D is the rate of detonation of the explosive, and k is
the conversion ratio between explosive energy and electromagnetic energy.

If resistance linearly varies with increasing temperature [R=Ry(1+ aT)] as joule heat is released in
it, we obtain
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dR _ Ry pra 2
& =% BRI, (2.2}

where ¢ is the temperature-resistance coefficient, C is the total heat capacity of the load, and Ry is the
initial resistance.

Equations (1.1),(2.1), and (2.2) determine a dependence of resistance on time,

4
R () = Ro(i + 2 [ S®e® )

and the inductance of an optimal generator

i
L) = L) — OYP%-( 2“’”"?5(&)9(&) dE) dr.

§ 3. Letusfindthe optimal (in terms of the energy of the explosive charge} width of the busbars, cur-
rent, power, and behavior of the resistive load with time as a two-dimensional explosive-driven magnetic
field generator is connected to a resistance that linearly increases with temperature. The inductance of
a two~dimensional generator is determined by the equation

—14-Dt

Ly (t) = L, (0) — jl !%dx. (3.1)

Here it is assumed that the magnetic field in the generator is homogeneous, i.e., the distance between
the busbars (2b=const) is less than the busbar width 2y(x), which varies throughout the length of the genera~
tor x(t). The busbars are closed at a rate equal to the detonation rate D; the total generator length is de~
noted by 1 and the coordinate origin is situated at the point at which the busbars are connected to the load.
The cross section of an explosive charge with constant thickness 26 is given by

S(z)=48y(2)-

Equations (2.1) and (3.1) imply that the behavior of the current in an optimal two-dimensional genera~
tor coincides with the variation in the width of the busbars compressing the magnetic field,

I=Iylyes yo=y(—1).

This is explained by the fact that the reserve of kinetic energy of any element of the conductor that
it can obtain from an explosive charge with constant thickness remains invariant throughout the length of
the generator if an explosive-driven magnetic field generator is optimized relative to k=const. The factor
k will be optimal if the force acting on the conductor in the direction of the magnetic field remains con-
stant along the explosive charge or along the stopping distance 2b=const. That is, the linear current den-
sity on the compression front of the magnetic field must be identical in a generator with variable busbar
width.

We find the optimal busbar layout

B— 160kqby,Dp,

p
RVEE T R

and increase in load resistance

B
‘R(t) = R, ]/ 1+ % {exp (2pt) —1].
from the equations presented above, given p= ppexp(Bt), where f=const. We may determine the power P =
RI released in the 1cad for known R(t) and I(t). '

The nature of the variation of busbar width, current, resistance, and power depends to a significant
degree on the parameter f§ in sufficiently long generators. When >0 and t -+, busbar width and current
approach the linits

y(x)=yol/ 2p/B, I=Io}/ 2p/B,
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while resistance and power exponentially increase,
R— R,V BI2Bexp (pt), P— RoI3 V 2p7B exp (B).

If B <0, the resistance will be at most Rﬂ——»—B/ 2B ,while the busbar width, current, and power decrease
to zero. When the active load is constant {a=0),

Y (x) = Yo exp (B ”5%1)

which corresponds to a previously obtained [6] result.

The result for the operation of a two-dimensional generator with constant p =p ;is qualitatively dif-
ferent. In this case, busbar width (and current) decreases,

Yo ,
1/ 1+ B”_})'_E
while the resistive load increases according to a different time law,
R(t)y=R,)/ T+Bt.

A decrease in busbar width is entirely natural, since the condition p =const holds only when ~dL/dt=47bD/
y(x) increases with increasing resistance. Therefore, the requirement that p =const, leads to a contraction
of the generator busbars.. The energy

y(z) =

D

W,= | RPdt = g—(]/u- B4 — 1)
0

is released when the busbars are laid out in this way as the flux in the load is compressed, while the energy
of the explosive charge used is given by

0 —_—
Q =_§l4qay(x)dx=2fT%(1/1+B-%—1).

The ratio

% = 2kp, (3.2)
makes it clear that when py> !/,, energy that can be released from the resistance is greater than that con-
tained in the explosive charge. This apparent contradiction can be explained in the following manner.

Apower—(IZ/Z)(dL/dt) is released in an active load and is used to increase the energy of the magnefic
field, while the energy equation has the form

— Pl _
2 dt

d (le) 3.3)

RP"“E 5 )

It is therefore evident that magnetic field energy is released from the resistance (in addition to the energy
of the explosive charge) when R> —1/2(dL/dt), sothat Eq. (3.2) is not without meaning.

We integrate Eq. (2.1) with known cross section S(x) of the explosive charge, determining the induc-
tance

i
2k, R (E
L) = L0)— | 2250 at

of the explosive~-driven magnetic field generator that can develop a power P=RP from a resistance R{t),
this power varying with time in a given way.

§ 4. Letus consider the optimization problem for an explosive-driven magnetic field generator with
respect to the release of the greatest energy for a variable active load.

We may assume that different amounts of energy will be released in the same actively loaded unit
depending on R(t). When R—0, W; —0, while when R —« (due to rapid flux loss), energy somewhat exceed-
ing the initial energy of the magnetic field (Wy= LgI)*/2) cannot be expected. We have W;=Wyln(Ly/L,) for
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Ry =const and p=1/2 [5]. Experiments have been described [7] on loading explosive-driven magnetic field
generators to a special plasma load in such a way that the inverse Reynolds magnetic number was kept con~-
stant, and the energy in it was calculated.

It is of greater interest to find a dependence between the parameters of an explosive-driven magnetic
field generator under which the greatest energy is released as it operates with an arbitrarily varying re-
sistive load. This problem can be completely solved when p = py= const.

We then find that the current is given by
I{: I \—os;

the resistive energy by

W= | REa =W, 2 (1 — hi-oy; @

and the magnetic field energy of the generator by
W, = LI*2 = W \—2P0

where A = Ly/L(t), Ag= Ly/L, are the current and total adjustment factors of the generator and Ly=1,4(0) + L,
is the initial inductance of the circuit.

Figure 2 depicts E=W;/W, as a function of p when Ag=100 and 10 (curves 1and?2), so that it is evident
that there exists a unique Py for a given A; at which energy has maximal value E, [E* (p*, Ag) is depicted by
curve 3]. The value of p, s determined by solving the transcendental equation

dE T 20 51— - (4.2)
Pt e s e hudg = 0.

We introduce the variable
E=(1—2p,) In &,,

making it possible to reduce Eq. (4.2) {to determine the optimal Py and Ay) to the system of equations

205 =1 —E/In Ay
2p*= I—exg(-g),

where Xq is a parameter. We find p, (Ag) (Fig. 3) by graphically determining Ay from Egs. (4.3).

An analysis of E, and W* =W, /Wy shows that significant release of energy on the activeload mayoc-
cur at low p . When p >1, the resistive energy is close to the initial energy of the magnetic field.

The chief part of the eenrgy is released due to resistance in generators with py=p_ and low adjust-
ment factor Ag< e?. When A=’ the energy released in a resistive load at the end of generator operation
is twice the energy stored in the magnetic field. The energy stored in the magnetic field exceeds the en-
ergy due to resistance in generators with a high adjustment factor (Ag> e?).

Equation (4.1) implies that the energy released due to resistance does not have a maximum as a func-
tion of A for a given p;. When py< 1/2 energy W; monotonically increases together with Ay up to Wy =
Wa2p Al-2p 0 /(1—2p 9. Whenp ;< 1/2,the energy inthe resistive load increases with increasing Ay, remaining
bounded by Wy~ W[2p 0/(2p o~ 1D ]. Letusconsider the operating conditions of an explosive-driven magnetic
field generator when p ;= 1/2. Itis clearfrom the energy equation (3.3) that the energy of the magnetic field inthe
generator remains constant when R(t) =—! /»,dL/dt and that all the power developed as the current-carrying
circuit is deformed by applied forces is consumed in heating the conductors, i.e., W,= Wy and Wy = Wylna,.

In Fig. 2 the vertical line passing through py=0.5 corresponds to this E. The energy release due to
resistance under these operating conditions is less than for optimalp_ = 1/2. Figure 4 depicts resistive en~
ergy release (unbroken curves) and the magnetic field energy (broken curves) for a given py as a function of
Ay, where py=0.25 for curves 1 and 1', p;=0.5 for curves 2 and 27, and ;=1 for curves 3 and 3'.

Thus, a calculation of the parameters of an explosive-driven magnetic field generator in which en-
ergy W is released for resistance R(t) in the course of operation, reduces to the following. We specify
the ratio Wi/ Wy, taking into account the initial energy Wy, and find the optimal p, from curve 3 in Fig. 2
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to which Ay corresponds in Fig. 3. We determine the desired variation of the generator inductance from the
value of p, found and from the given R(t) by integrating Eq. (1.1).

A study of the operation of explosive-driven magnetic field generators demonstrates that the selection
of a particular dependence between its parameters (explosive charge stopping distance, load resistance, etc.)
allows us to:

1) determine the optimal (relative to the use of the energy of the explosive) inductance of an explosive-
driven magnetic field generator connected to a resistance that varies with temperature;

2) construct generators that can develop power varying with time according to a given law for a resis-
tance R(t);

3) find an inductance for arbitrary load R(t), setting p = const, such that the greatest amount of energy
is released for resistance during the operation of the explosive-driven magnetic field generator.

The author wishes to express his appreciation to E. I. Bichenkov for useful remarks.
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